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Abstract

We introduce a modified invasion percolation (MIP) model for the immiscible displacement of
a nonwetting fluid by a wetting fluid within a porous network. The model includes the influence
of gravity and is applicable in the quasi-static limit of infinitesimal flow rate where viscous forces
are negligible with respect to gravity and capillary forces. The incorporation of gravity alone
creates complicated, pore-scale gravity fingers. To properly model wetting fluid invasion where
macroscopic gravity fingers form, we incorporate a pore-scale geometric capillary smoothing
function we refer to as “‘*facilitation.”” Facilitation models the physics of wetting fluid invasion of
pores by modifying the capillary pressure required to fill a pore based on the number of adjacent
necks connecting the pore to the invading wetting fluid. The wetting fluid invasion facilitation
process creates compact clusters and macroscopic fronts in horizontal simulations and in combina-
tion with gravity, creates macroscopic, gravity fingers that are in qualitative agreement with
physical experiments. The MIP model yields much different imbibition front structures than
standard invasion percolation. For MIP, capillary fingering, capillary facilitation, and gravity
fingering compete to determine the wetted network structure as a function of pore-size distribu-
tion.

1. Introduction

Gravity-driven fingering of water in air-filled, water-wettable porous media and
fractures has been studied in a number of laboratory experiments since its discovery in
the early 1960’s (see reviews in papers contained in this special issue of Geoderma).
While understanding of the phenomenon has greatly advanced over this period, the
effects of a number of complicating factors ubiquitous under field conditions are yet to
be fully explored. The influence of uniform and non-uniformly distributed initial
moisture content, media heterogeneity, and macropores and fractures were discussed by
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Glass and Nicholl (1996). All of these factors have the ability to fundamentally affect
the fingering process, its scale of expression, or suppress its occurrence entirely. In
addition to these factors, the properties of the media /fluid /fluid system, as influenced
by pore shape and pore-size distribution, control gravity fingering.

In this paper, we explore pore-scale controls on gravity finger formation and water
swept structure at the guasi-static, low flow limit (i.e., small capillary number). We
begin with a description of observed pore-scale finger advancement. This observed
behavior 1s used as a basis to formulate a conceptual model, a modified form of invasion
percolation, which incorporates the Hatnes jump pore-filling mechanism, gravity, and a
pore-scale geometric interfacial capillary smoothing function we call adjacent-neck-
pore-filling “‘facilitation’’. Facilitation accounts for the combined effects of surface
tension, pore geometry, and contact angle that must be incorporated to properly model
the spontaneous imbibition of a wetting fluid tnto a non-wetting fluid filled porous
media. To demonstrate model behavior, we implement the modified invaston percolation
(MIP) for a two-dimensional and quasi-three-dimensional network of two-dimensional
porcs. We explore a single random pore network hierarchy within which we vary
idealized pore geometries (and thus facilitation) and size distributions. The wetted
structures and fingers that evolve under horizontal and vertical downward infiitration are
found to be dependent on both the pore geometries and the pore-size distribution. This
dependence exhibited by MIP is absent in standard invasion percolation models.

2. Formulation of conceptual model

A gravity finger in an initially dry, clean, narrow distribution sand, is composed of a
nearly saturated tip that drains a distance behind its leading edge as the finger grows
downward (Glass et al., 1989c). Finger tips are essentially short, nearly saturated,
hanging water columns which are fed from above under near unit gradient at a rate
determined by the relative permeability of the transmission zone connecting the nearly
saturated tip to the fluid source. The length of the saturated zone (L) of all finger tips is
found to be greater than the difference between air-entry value (4. ) and the water-entry
value (¢, ) of the hysteretic pressure—saturation relation (A ) (Glass et al., 1989c).

As flow rate increases to the system, finger velocity, finger width, and L, increase
and in the “*high flow’’ limit a stable one-dimensional flow field is forced (Glass et al.,
1989a, Glass et al., 1989b). Thus, while gravity fingering is considered to be a highly
dynamic process, observations show that raising the total system energy by increasing
the system flow rate actually stabilizes the flow field; thereby decreasing complication.
It should be noted that the converse is true for viscous-driven fingering (Saffman and
Taylor, 1958).

At “‘low flow,”” where gravity fingering will dominate the flow field, the system
dynamics are primarily confined to the front and back of the nearly saturated finger tip.
There, localized Haines jumps occur as the meniscus in an individual pore becomes
unstable and moves rapidly to fill or empty the pore at a rate determined by local
capillary, viscous, and inertial forces. In addition to the Haines jump mechanism, liquid
also moves as films from wet regions to dry. However, film flow in clean, narrow
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grain-size distribution sands is quite slow in comparison to the rapid pore filling
associated with Haines jumps. The film flow mechanism is responsible for the long-term
development of a two-zone moisture content field under steady infiltration as demon-
strated by Glass et al. (1989¢). In their experiment, fingers moved through the sand
system in a matter of minutes, while the growth of the unsaturated film flow region
occurred over several days. These observations emphasize the dramatically different
time scales for the two separate wetting mechanisms in clean, narrow grain size
distribution sands.

Because finger growth is controlled primarily by the Haines jump mechanism, as
long as the time scale for finger growth is much shorter than that for film flow along the
grain edges, and slow enough for discrete jumps to occur (i.e., negligible viscous
forces), a pore-scale model that incorporates only the Haines jump mechanism is
appropriate. Here, capillarity and gravity combine to dictate growth by determining
which pore is filled next (i.e., has the lowest potential required for filling). For this
situation, a form of invasion percolation (IP) should apply.

The IP process, introduced by Wilkinson and Willemsen (1983), models imbibition
where the pressure potential within the wetted region does not vary in space. This is a
reasonable assumption in the quasi-static limit of infinitesimal flow rate where viscous
forces are negligible and the system is dominated by capillary (surface tension) forces.
IP occurs as follows:

(1) A pore network of a given connectivity is generated with each pore given a
probability of filling.

(2) Certain pores are filled initially to form a boundary wetting surface, usually either
an edge of a rectangular network or a disk at the center.

(3) All pores connected to the wetted pore surface are available for filling and the one
with the highest assigned probability of filling is found and filled. This modifies the list
of pores available for filling; the modified list is then sorted to once again find the pore
with the highest assigned probability of filling. This pore is filled, the list modified, and
SO on.

(4) Pores that become entrapped may or may not be removed from the pores available
to be filled depending on the situation of interest. If the defending fluid can be assumed
incompressible, then removal is appropriate, while if the fluid is infinitely compressible
or dissolvable, then entrapped pores should not be removed.

IP has been shown to conform reasonably well to the invasion by a nonwetting fluid
of a porous medium composed of a two-dimensional, horizontal, random pore network;
the fluid—fluid interface under such conditions exhibits structure at all scales down to
the pore-scale, and has been shown to be fractal (Lenormand and Zarcone, 1985). For
wetting fluids invading porous networks as considered here, interfaces are much
smoother and macroscopic fronts characteristically form (Lenormand and Zarcone,
1984). To apply IP to our problem, we must, therefore, modify it both to include gravity
and to conform to the physics of wetting fluid invasion.

To include gravity forces in proper magnitude with capillary forces, we cast the
probability of filling in terms of a pore-filling potential. This approach was first applied
by Wilkinson (1984) to study the effect of gravity forces on the mixing region between
two vertically stratified immiscible fluids. Here, the pore radius becomes the random
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Fig. 1. Simple geometric argument for adjacency dependent, pore-filling radius for an idealized two-dimen-
stonal square pore. In the figure on the left the pore is fed (gray denotes water, white air) from the left by one
neck. The pore fills by a Haines jump when the pore-filling radius, r,. reaches two times the pore radius, r,
given by that of a circle circumscribed by the square. If the pore is filled by either two or three adjacent necks
(right figure) then the menisci will touch when r| equals r, yielding a lower pressure potential required to fill
the pore. This adjacent-neck—pore-filling facilitation can be determined for a vanety of different pore shapes
and contact angles. The effect of a non-zero contact angle is illustrated by the dashed line.

variable. Pore-filling potential is calculated as the sum of the pressure potential and
gravity potential. Pore-filling pressure potential is given by the Laplace—Young relation
between the two principal radii of interfacial curvature (r, and r,), surface tension (o),
the fluid density difference (Ap), gravitational acceleration (g), and the capillary
pressure potential difference across the interface (Wp)i

1 1
—+—) (1

noon
Gravity potential (dzg ), is simply given by:
Y, = —zcosy (2)

where z is the spatial coordinate defined positive downward from the top of the network
and vy is the angle between vertical and the plane of the network.

For wetting fluid invasion of a porous media, the principal radii of curvature at the
point when the pore will fill depends on local pore geometry, contact angle, and the
number of adjacent necks connecting the pore to the filled interface and through which
the pore will fill. Neglecting the details of the neck—pore connection, the simple
geometric argument for adjacency dependence is shown for an idealized two-dimen-
sional square pore (r, becomes infinite) in Fig. 1. Note that the illustration depicts the
point beyond which a Haines jump occurs. When filling from a single neck (corner), the
pore-filling radius r, is equal to the side of the square or twice the pore radius, r,, given
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by the circle circumscribed by the square. If more than one surrounding pore is filled
such that two, three, or four adjacent necks are filled, then due to the touching of
menisci from each neck, r, is reduced to r,. Of course, if the nonwetting fluid is not
infinitely compressible, with four adjacent necks filled, the pore is entrapped and the
nonwetting fluid can not be displaced. Thus, when one or more adjacent necks are filled,
the curvature required to fill the pore is increased (r, decreased). We have coined the
term adjacent-neck—pore-filling facilitation or simply ‘‘facilitation’’ for this effect as it
lowers the pressure potential at which a pore fills. This argument for simple two-dimen-
sional geometries can be extended in principle to three-dimensional pores of complex
geometery.

While the filling of a pore with the wetting fluid is determined by the pore-filling
radius and connection to the wetting interface, drainage of a pore is governed by the
radii of the necks and the connection of pores through the necks to the air filled
interface. Once the total potential within a pore filled with the wetting fluid has
decreased below that required to empty one of the necks connecting it to the air filled
interface, both neck and pore empty immediately. Thus, assuming that a single neck is
not connected to more than two pores, the invasion of a pore by the non-wetting phase is
not affected by a facilitation mechanism and standard invasion percolation on the
network of necks and pores, independent of adjacency, should apply.

3. Model implementation and numerical simulation

While the modified invasion percolation model (MIP) introduced above is conceptu-
ally very simple, implementation requires that the exact geometry of the three-dimen-
sional pore network within a porous medium be known. This, of course, is only now
becoming technically possible and for only limited sample sizes (e.g., Adler et al.,
1992). As a first step toward understanding the implications of the pore network MIP
model for simulating the growth of a gravity finger, we consider here an idealized,
regular pore network with idealized pores of specific geometry. As above, we consider
necks connecting pores to be much smaller than the pores and to not pin invading
menisci, i.e., the detailed geometry of the necks and neck-pore connections is negligible
compared to that of the pore for wetting invasion. We further constrain ourselves to
two-dimensional pore geometry (r, infinite) on two-dimensional and quasi-three-dimen-
sional networks so that facilitation may be calculated exactly. Finally, we implement
only the wetting process within a simulation; inclusion of the simultaneous wetting and
drainage of pores within a simulation adds significant complication that is not required
to consider the pore-scale controls on gravity finger formation and water swept network
structure.

The two-dimensional network is abstracted as a regular array of two-dimensional
pores connected to each other by necks. Since this study is only concerned with wetting
fluid invasion, necks connected to a pore always fill when the pore fills. Pores are
centered on a regular square lattice, 256 pores wide by 512 pores long with a
macroscopic dimension 2.55 cm wide by 5.11 cm long. Pore connectivity is constant for
the entire network with a coordination of 4 or 8. In the network configuration for a
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Table 1
Formulas for pore filling radius
Square:
) 2r,an(45+ 6)

no adjacent necks: n=—————

cos 6 +sin &

' roan(45+ 8)

2, 3, or 4 * adjacent necks: I =——

cos 6 +sin @
Octagon:

) 2r tan(67.5+ 6)
no adjacent necks: r= -
tan(67.5)cos 8 +sin 8
‘ . 2r,(1+1/v2 ) tan(45 + 8)

2 adjacent necks: = -

tan(67.5)[cos 0 +sin ¢ ]

2r [ 1+t S)|tan(22.5+ @) tan(22.5
3 adjacent necks: = rp[ an(67.3)]tan(22.5 ) Aan( )
tan(67.5)[tan(22.5) cos & +sin 8 ]
o rptan(67.5+ 8)

4,.5,6,7, or 8 * adjacent necks: =

tan{67.5)cos 6 +sin 8

* Only applicable to infinitely compressible fluids.

coordination of 8, diagonal connections are made that do not communicate with each
other at the crossing point. This configuration mimics a three-dimensional network with
every other pore (both vertical and horizontal) on each of two parallel planes (Wilkinson
and Willemsen, 1983).

We explore two idealized two-dimensional pore shapes where facilitation can be
calculated exactly: squares (coordination 4) and octagons (coordination 8). The pore
radius (rp) denotes the radius of a circle that would be circumscribed by each,
respectively. Formulas based on two-dimensional pore geometry and contact angle (9)
for the calculation of the pore-filling radius r, from r, considering facilitation are given
in Table 1. Note that contact angles much less than 90 degrees result in non-wetting
pores (e.g., above 45 degrees for the square pores and above 22.5 degrees for the
octagon pores). For simplicity, contact angle is taken to be zero.

Because reasonable estimates of minimum and maximum pore sizes are available as
well as mean and variance, the maximum entropy principle suggests the use of a Beta
distribution for describing the r, distribution (Harr, 1987). Therefore, we choose ro
from the Beta probability distribution defined over the range [r,;,, rmax] by:

F(r,) = C(ry= 1) “(ry = T )’ (3)

where «> —1 and B> —1.If @ and B are integers, the normalizing constant (C) is
given by:

oo (a+B+1)! @)
a!B!(‘rmax_ rmin)ﬂ+B+]




R.J. Glass, L. Yarrington / Geoderma 70 {1996) 231-252 237

DAL ISV, N XS
-
-
A

L

e - T .- .-
0.90 48 —omde s = T S } + P e oL IR v } +
@.0010 ©.P835 4.0070 0.002% ©0.0030 0.0035 0.004¢0 0.C065 0.005D 0.00%3 U§.00&0 0.0065 9.00%0 0.0075 5.0080 O0.0085 0.00%0 B.0095 4.0100

Fig. 2. Plot of the cumulative Beta probability distributions used in this study to represent pore sizes. Only
symmetrical distributions are explored; where a = 8 =(0, 1, 2, 4, 8, 16, 32) in the interval 0.001 to 0.0l ¢m.
Increasing e = 3 is denoted by the arrows.

Here, only symmetrical distributions are explored where, a = 8=10, 1,2, 4, 8, 16,32 in
the interval 0.001 to 0.01 cm. Fig. 2 shows a plot of the cumulative probability
distributions used in this study. Pore radii are distributed randomly within the regular
two-dimensional network. For each distribution considered here, we keep the global
hierarchy (i.e., order for the field) identical. Thus, all differences seen in the results
presented below are due entirely to the combination of pore-size distribution, pore shape
(facilitation), network connectivity (coordination of 4 or 8), and angle in the gravity
field (horizontal or vertical). Evaluation of the pore networks, assuming thermodynamic
equilibrium with r, = r_ and §=0 (i.e, all pores are equally accessible for filling with
no facilitation, trapping, or hysteresis), yields fluid retention curves relating pressure
potential to network saturation for the wetting fluid as shown in Fig. 3.

A simulation is started by making all pores in the top row of the network available
for filling (top 256 pores). These pores are searched to find the pore with the lowest
filling potential and this pore is filled. The list of pores available to be filled is then
adjusted to remove those pores that have become entrapped and include those adjacent
to the newly filled pore. Filling potentials are then recalculated to include any change
due to facilitation and the list is again searched for the pore with the lowest filling
potential, and so on. These simulations model the imbibition of water through the
combined action of capillary and gravity forces into the top of a vertical, air filled
porous media (y = 0 degrees). Air is allowed to move freely out the sides and bottom of
the network. For comparison purposes, the mode!l is also run without gravity (y = 90
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Fig. 3. Evaluation of the pore networks with pore-size distributions shown in Fig. 2, and assuming
thermodynamic equilibrium with r, = rpand =10 (i.e., all pores are equally accessible for filling with no
facilitation, trapping, or hysteresis), yields an equilibrium fluid retention curve relating pressure potential to
network saturation for the wetting fluid. Increasing « = 8 is denoted by the arrow.

degrees) to simulate horizontal imbibition and without facilitation so that ry=r,. The
combination of no facilitation and no gravity collapses the MIP model to that of IP.

4. Results

The sequential development of the wetied structure as water is imbibed into the
horizontal network without facilitation in coordination of 4 is shown in Fig. 4. The
wetted structure at network breakthrough for the same situation in coordination of 8 with
crossing necks is shown in Fig. 5. For these and all other simulations presented here,
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Fig. 4. Horizontal imbibition, no facilitation in coordination 4. Wetted structure is shown at three positions as
water is imbibed into the network under capillary forces. Black denotes water, gray entrapped air, and white
unentrapped, mobile air.
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Fig. 5. Honzontal imbibition, no facilitation in coordination 8. Wetted structure at network breakthrough.
Black denotes water, gray entrapped air and white unentrapped, mobile air.

black denotes the water phase, white the air phase that is free to move out of the
network, and gray the entrapped air phase. Wetted structure growth is seen to occur in
small ‘‘capillary fingers’’ that have no particular orientation and most often grow back
on themselves. The wetted structure is found to be very complicated at all scales down
to the pore-scale and has been shown to be fractal (Wilkinson and Willemsen, 1983). In
addition, the wetted structure that evolves is independent of the pore-size distribution
(a=8=0,1,2, 4,8, 16, 32 all give identical results) and a function of only the pore
hierarchy or structural order within the random field. Important differences between a
coordination of 4 and § in the wetted structures and magnitude of air entrapment can be
seen in Figs. 4 and 5. At the point when water first reaches the end of the network, only
water exists as a continuum in coordination of 4. With a coordination of 8, a bi-continua
of air and water exists with very little phase entrapment. This result exemplifies the
distinction between two- and three-dimensional networks. All these results are identical
to those found for IP by others (e.g., Wilkinson and Willemsen, 1983) and provide a
point of comparison for the MIP model incorporating gravity and facilitation.

For vertical downward infiltration without facilitation, gravity influences the growth
of small capillary fingers yielding an overall downward preference (see Fig. 6). A single
vertically oriented macroscopic finger results which is composed of a sequence of larger
clusters where small capillary fingers have grown back on themselves strung together by
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Fig. 6. Vertical downward infiltration, no facilitation in coordination 4. Wetted structure is shown at three
positions as water is imbibed into the network under capillary and gravity forces. Black denotes water, gray
entrapped air, and white unentrapped. mobile air.
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Fig. 7. Vertical downward infiltration, no facilitation in coordination 4. Wetted structure at network
breakthrough for 8 = e of 0 (a), 2 (b), 8 (c), and 32 (d). Black denotes water, gray entrapped air, and white
unentrapped, mobile air.
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Fig. 8. Vertical downward infiltration, no facilitation in coordination 8. Wetted structure at network
breakthrough for 8 = & of 0 (a), 2 (b), 8 (c), and 32 (d). Black denotes water, gray entrapped air, and white

unentrapped, mobile air.
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Fig. 9. Horizontal imbibition, square pores. Wetted structure at network breakthrough for 8 = @ of 0 (a), 2
(b), 8 (¢). and 32 (d). Black denotes water. gray entrapped air, and white unentrapped, mobile air. Note that in
(d), the network was entirely filled with water (black) at breakthrough.
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Fig. 10. Vertical downward infiltration, square pores. Wetted structure at network breakthrough for 8 = ¢« of 0
(a), 2 (b), 8 (c), and 32 (d). Black denotes water, gray entrapped air, and white unentrapped, mobile air. Note
that in (d), the network was entirely filled with water (black) at breakthrough.
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Fig. 11. Horizontal imbibition, octagon pores. Wetted structure at network breakthrough for B= a of 0(a), 2
(b), 8 (¢), and 32 (d). Black denotes water, gray entrapped air, and white unentrapped, mobile air.
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Fig. 12. Vertical downward infiltration, octagon pores. Wetted structure at network breakthrough for 8 = o of
0 (a), 2 (b), 8 (c), and 32 (d). Black denotes water, gray entrapped air, and white unentrapped, mobile air.
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narrow zones at the scale of a single capillary finger often only a single pore wide. Figs.
7 and 8 show the finger structures at network breakthrough for « = 8= 0, 2, 8, 32 fora
coordination of 4 and 8, respectively. Macroscopic finger width is observed to be a
function of the pore-size distribution; as the distribution narrows, capillary fingering is
more influenced by gravity and macroscopic finger width decreases. While such a
pore-scale fingering pattern may be qualitatively similar to gravity nonwetting fluid
fingering, the highly complicated geometry of the finger edges does not compare well
with the much smoother edges observed in gravity wetting fluid fingering (Glass et al,,
1989b).

Consideration of pore geometry demonstrates the effects of facilitation. For both the
idealized square and octagonal two-dimensional pores, macroscopic fronts are seen to
form both during horizontal imbibition (Fig. 9 and Fig. 11) and vertical downward
infiltration with gravity (Fig. 10 and Fig. 12). These macroscopic fronts create more
compact wetted structures with less entrapped air phase. Wetted region structure is also
affected by pore-size distributions. For squares, an increase in a = f increases the
macroscopic smoothing effect such that at « = 8 = 32 the front becomes flat across the
network with or without gravity (Fig. 9d and Fig. 10d). This occurs because [r,,,, —
Fin] < 0.5r,,, and all the pores in one row will fill due to facilitation before any pores
in the next row are filled (@ = B = 32 is above this limit, see Fig. 3). Octagons behave
similarly to squares but with less smoothing of the interface, as is expected from the
additional connections and calculations for r, (Table 1). In contrast to behavior
observed for square pores, at a = 3= 32, the tront is far from flat for the octagon pore
geometry in Fig. 11d and Fig. 12d. Additional simulations were performed with the
octagon pore network for narrower distributions yielding a similar domination of
smoothing for a = B ~ 512, with or without gravity. The facilitation dominated struc-
ture has an octagon-like pattern, emphasizing that for both the squares and octagons, the
connectivity in combination with the regular grid chosen for our simulations clearly
influences the substructure and creates blocky (flat) or octagon-like subunit artifacts.

Finger width was measured on the vertical simulations. The finger edges were taken
to be the first and last pores encountered that were filled with water in a horizontal row.
The difference between these two edges was used as the local finger width. Neglecting
the top 10% and the bottom 10% of the field where boundary effects were significant,

Table 2
Calculated finger widths (¢cm)

a = 8 Coordination Standard Coordination Standard Coordination Standard Coordination Standard

four squares  deviation four no deviation eight octagons deviation eight no deviation
facilitation facilitation
0 1.1789 04189 0.6038 0.4497  1.3896 0.7268  0.505 03514
1 1.0247 0.41057 0.3666 0.1834  1.3051 07191 045 0.2951
2 1.0236 04114 043 0.2106  1.2245 0.7626  0.4015 0.2276
4 0.8048 03632  0.4861 0.1912  1.1838 0.7081  0.4323 0.2571
8 0.7272 0.3881  0.6426 0.1697  0.7048 0.3458  0.3064 0.1374
16 0.6554 0.3732 1.7655 0.1641 0.6291 03306 03018 0.1652
32 0.4748 02836 - - 0.7255 0.42 0.3007 0.1313
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the average and standard deviation of the local finger widths were calculated. Table 2
shows the behavior of the finger width and standard deviation as a function of pore-size
distribution (a = B).

5. Discussion

The MIP model yields much different imbibition front structures than IP for wetting
fluids (in this case, water) advancing into networks initially filled with a non-wetting
fluid (in this case, air). For MIP on random networks, capillary fingering, capillary
facilitation, and gravity fingering compete to determine the wetted network structure as a
function of pore-size distribution. Over different portions of the parameter ranges, each
process can dominate over the others. Where pore-size distribution is sufficiently wide,
variability in capillary pressure potential from pore to pore dominates structural evolu-
tion, and near-pore-scale, non-directional capillary fingering occurs (see Fig. 9a and Fig.
11a). Where the pore-size distribution is sufficiently narrow, capillary facilitation
dominates, the saturation front is smooth and water moves across the network from the
supply surface in one macroscopic front {see Fig. 9d and Fig. 10d). At intermediate
pore-size distributions, gravity dominates and a single gravity finger moves in close
alignment with the gravitational vector (see Figs. 10c and 12d).

These results suggest capillary forces to stabilize downward infiltration events either
in very narrow or very wide pore-size distribution media. While this stabilization is
intuitive for wide pore-size distributions, gravity fingering has generally been considered
to dominate as the pore-size distribution narrows. For very narrow distributions, it is
probable that to overwhelm capillary facilitation smoothing, perturbation wavelength
must be above a lower limit. This, of course, is analogous to the stabilization provided
by an effective surface tension incorporated in the linear stability analysis of Chouke et
al. (1959). It is also possible that the amplitude of the perturbation must also be above a
lower limit for a gravity finger to form, especially where facilitation fully dominates
displacement (e.g., see Fig. 10d for the square pores). In this case, the wavelength of this
large amplitude perturbation will likely determine finger width as has been seen in
experiments conducted in fractures (Nicholl et al., 1994).

For MIP to capture the downward moving saturated finger tip with drainage behind,
incorporation of simultaneous wetting and drainage within a single simulation is
required. A separate size distribution for the smaller necks must be incorporated along
with the redefinition of the gravitational potential (Eq. 2) to apply only within connected
fluid regions. It is important to note that this analytic complication is not required for
MIP to generate gravity fingers and the water swept structure. The critical aspect of
finger growth is the incorporation of the hanging column effect in the definition of the
gravitational potential to yield a total potential within the finger that is hydrostatic, with
the pressure potential decreasing upward from the back of the finger tip.

Qualitatively, macroscopic finger structure seen in experiments in porous media
(Glass et al., 1989c) is very similar to that demonstrated by the MIP in Fig. 10c for
squares (a = B = 8) and Fig. 12d for octagons (a = 8 = 32). While pore-size distribu-
tions were chosen to span a range that was representative of previously used experimen-
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tal sands, the fact that ideal two-dimensional pore geometries were assumed (r, infinite)
makes quantitative comparison of modeled and experimentally determined finger widths
difficult. For a three-dimensional pore, additional contribution to the total potential from
capillary forces may be as great as a factor of two. Facilitation may also act on both r,
and r,, depending on the pore geometry, so that its effect may be more important than
in the two-dimensional pores. Alternatively, facilitation may act only on one of the two
radii of curvature and, thus, its effect diminished as the other radius becomes of the
same order or smaller. Regardless of these limitations, quantitative agreement with
measured finger widths in experimental sands is quite reasonable, The 14-20 mesh sand
used in the experiments of Glass et al. (1989b) yielded a finger width of approximately 1
cm in the low flow limit. Comparison to Table 2 shows the finger width for most
pore-size distributions to be within a factor of two and many within one standard
deviation of the physical experimental results. At present, experiments considering the
effects of pore-size distribution on finger formation and resulting finger width, have not
been conducted. Based on our model results, a series of experiments and numerical
simulations should be conducted to test the hypothesized system behavior as a function
of pore-size distribution. For these comparisons, MIP should be implemented for a
three-dimensional network with capiliary facilitation functions developed for three-di-
mensional pores.

It must be emphasized that MIP does not include the influence of viscous forces or
time. The MIP analysis is restricted to situations where the flow rates are low but at the
same time high enough that fluxes due to film flow are negligible. Since viscous forces
stabilize gravity fingering, exploration of the quasi-static limit with approaches such as
MIP allows us to investigate the importance of a variety of factors that may also
stabilize fluid displacements where current theory suggests gravity fingering to occur. In
addition, under many natural gradient conditions within the vadose zone, flows are slow
and viscous forces are small relative to capillary and gravitational forces. From this
perspective, MIP should yield behavior representative of many natural field situations.

Finally, two differences between MIP and IP of a more theoretical nature are worth
mentioning. The first is that when gravity fingers form, MIP supports the existence of a
directional bi-continua in a truly two-dimensional network. If the width of the network 1s
larger than the finger width, then both air and water pathways exist vertically, yielding a
vertical bi-continua. As a consequence, neither phase is laterally continuous across the
system. Secondly, a macroscopic length scale for IP does not exist, whereas for MIP
when gravity fingers form, a length scale on the order of the finger width can be
defined. These results are significant for understanding two-phase flow in single
fractures where a two-dimensional pore network is a reality (Glass, 1993).

6. Conclusion

The Haines jump pore-filling mechanism responsible for pore-scale finger tip growth
is mimicked by the invasion percolation process. The inclusion of gravity into invasion
percolation models yields gravity fingers. Adjacent-neck—pore-filling facilitation, which
incorporates a pore-scale geometric interfacial capillary smoothing function into inva-
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sion percolation models, causes the formation of macroscopic fronts, and in combination
with gravity, macroscopic fingers. These qualitative results compare favorably with
those of physical experiments for wetting fluid invasion of a porous media where
macroscopic fronts and gravity fingers form.

A large number of physical situations and system parameters can be evaluated with
the MIP model. These include: the influence of contact angle, the shape of the pore-size
distribution, heterogeneities, initial fluid content, and other fluid /fluid systems such as
NAPL /air and NAPL /water. The major constraints of this model are simply that
viscous forces be small with respect to capillary and gravity forces, and that non-pore-
filling mechanisms such as film flow are negligible. Thus MIP will not capture dynamic
aspects of fingering at high flow rates as studied by Glass et al. (1989b) and others. An
additional limitation in the current implementation is the overly simplistic representation
of the pore network as a regular grid composed of two-dimensional pores of ideal
geometry connected by necks of much smaller size. These limitations, however, can be
relaxed as more realistic networks and facilitation rules are developed to better represent
natural three-dimensional systems.
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